Study on Management of Fusarium oxysporum through Different Mode of Action of Trichoderma spp.

Main Article Content

Preeti Sonkar Ramesh Chandra Ravindra Singh Surrender Kumar
Abstract viewed - 193 times.  PDF downloaded - 122 times.

Abstract

Argonomically, Fusarium oxysporum is an important plant pathogen. Importantly, it is a vascular wilt causing agent which has spread at worldwide. Morever, a needful management are require in regard to crop protection and human health. It secretes some mycotoxin such as Fumonisins, Trichothecenes, Zearalenone which are harmful. Further growth time, its mycelium  secrete unique protein, called ‘secreted in xylem’ (Six) protein, into xylem sap, and other protein also reported.  However, it is control by agrochemical rather harmful for environment with health. Indeed Trichoderma spp. is a good biocontrol agent (BCA) and also a good substitution of agrochemical with ecofriendly. Trichoderma spp. secrete some compound such as volatile, non-volatile, water soluble and secondary metabolite. All compounds secrete from a unique gene, called as gene cluster. Trichoderma spp. has played a crucial role in parasitism behavior for Fusarium oxysporum by different mode of action. Constituently, it has been regulated mechanism viz. direct mechanism (Competition, Mycoparasitism, Antibiosis and induce resistance of host plant) and indirect mechanism (Inactivation of the enzymes produced by pathogen).

Downloads

Download data is not yet available.

Article Details

How to Cite
SONKAR, Preeti et al. Study on Management of Fusarium oxysporum through Different Mode of Action of Trichoderma spp.. International Journal of Current Trends in Science and Technology, [S.l.], v. 8, n. 03, p. 20192-20200, mar. 2018. ISSN 0976-9730. Available at: <http://currentsciences.info/index.php/ctst/article/view/382>. Date accessed: 25 sep. 2018. doi: https://doi.org/10.15520/ctst.v8i03.382.pdf.
Section
Biotechnology

References

1. Inoue I, Namiki F, Tsuge T. Plant Colonization by the Vascular Wilt Fungus Fusarium oxysporum Requires FOW1, a Gene Encoding a Mitochondrial Protein. The Plant Cell. 2002;14(8):1869-1883.
2. Pietro, A. D., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J. and Roncero, M. I. G. (2003), Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4: 315–325.
3. Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497–516.
4. De Sain, M., & Rep, M. (2015). The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International Journal of Molecular Sciences, 16(10), 23970–23993.
5. Waghunde, Rajesh & Shelake, Rahul & N. Sabalpara, Ambalal. (2016). Trichoderma: A significant fungus for agriculture and environment. African journal of agricultural research. 11. 1952-196. 10.5897/AJAR2015.10584.
6. Druzhinina IS, Kopchinskiy AG, Kubicek CP. The first 100 Trichoderma species characterized by molecular data. Mycoscience. 2006;47:55–64.
7. Noar RD, Daub ME (2016) Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis. PLoS ONE 11(7): e0158471.
8. P.K. Mukherjee, N. Buensanteai, M.E. Moran-Diez, I.S. Druzhinina, C.M. KenerleyFunctional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maizeMicrobiology (Reading, England), 158 (2012), pp. 155-165
9. Susanne Zeilinger, Sabine Gruber, Ravindra Bansal, Prasun K. Mukherjee, Secondary metabolism in – Chemistry meets genomics, Fungal Biology Reviews, Volume 30, Issue 2, 2016, Pages 74-90, ISSN 1749-4613.
10. Elkomy, M.H. Saleh A.A., Eranthoda A., Molan Y.Y, (2015) Characterization of novel Trichoderma asperellum isolates to select Effective Biocontrol Agents against Tomato Fusarium wilt. The plant pathology Journal, 31 (1):50-60.
11. Merkuz, A. and Getachew A. (2012a) Management of Chickpea wilt (Fusarium oxysporum f. sp. ciceris) using Trichoderma spp. Int. J. Curr. Res. 4(05):128-134.
12. Bansode R. (2015) Trichoderma: A Boon to plant disease management. Biotech Article 09:07:00.
13. Benitez, T., A.M. Rincon, M.C. Limon and A.C. Codon. (2004) Biocontrol Mechanism of Trichoderma strains. International Microbiol, 7:249-260.
14. Elad, Y., Chet, I. and Henis, Y., (1983) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii Scanning electron microscopy and fluorescence microscopy. Phytopathol., 73:85-88.
15. Howell, C.R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant disease: the history and evolution of current concepts. Plant Disease, 87:4-10.
16. Contreras- Cornejo HA, Macias- Rodriguezt, Beltran-Pena E, Herrera-Estrella A, Lopez-Bucio J. (2011). Trichoderma-induced plant immunity likely involves both hormonal and comalexin-dedendent Mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungas Botrytis cinerea. Plant ksignaling & Behavior. 6 (10):1554-1563.
17. Salas-Marina M.A., Siwa-Flores M.A., Uresti-Rivera E.E., Castro Longoria E., Herrera-Estrella A., casas-Flores. (2011). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and Salicylic acid pathways. Eur. J. plant pathol. 131:15-26.
18. Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M. (2012). Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a Microbiol pesticide of seedborne diseases of rice, Pest manag Sci. doi:10.1002IPS.2220.Epub 2011 June 14. Pubmed PMID: 21674754.
19. Cuervo-Parra JA, Ramirez-Lepe M, Cortes R.T. (2015). Biological control of phytopathogenic Fungi. Omics Group e Books 978-1-63278-059-1.
20. Harman GE (2006) Overview of Mechanisms and uses of Trichoderma spp. phytopathology 96:190-194.
21. Benitez T1, Ricon A.M., Limon MC, Codon A.C. (2004) Bio control Mechanisms of Trichoderma strain. Int. Microbiol 7:249-260.
22. Waghunde R.R., Shelake Rahul M., and Sabalpara A.N. (2016) Trichoderma: A significant fungus for agriculture and environment. African Journal of agricultural Research Vol. 11(22), 1952-1965.
23. Eziashi EI, Omamor I.B. and Odigie E.E. (2007) Antagonism of Trichoderma viride and effects of extracted water soluble compounds from Trichoderma species and benlate solution on ceratocystis paradoxa. African journal of biotechnology Vol.6 (4), 388-392.
24. Kelley,R.D. and Jones,A.L.(1981).Evolution of two triazole fungicides for postinfection control of apple scab. Phytopathology,vol.71,no.7,737-742
25. Kulka,M. and Von schmeling,B.(1987). Carboxin fungicides and related compounds.In: Modern selective fungicides- Properties, Applications, Mechanisms of Action, H. Lyr(Ed.),119-132, Longman scientific and technical, ISBN 0-582-00461-6, Harlow,U.K.
26. Maude,R.B.(1996).Seedborne Diseases and their control-Principles and practice. CAB International, ISBN 0-85198-922-5 oxon, U.K.
27. Schofl, U.A. and Zinkernagel, V.(1997). A test method based on microscopic assessments to determine curative and protectant fungicide properties against septoria tritici. Plantpathology, vol. 46,545-556, ISSN 0032-0862.
28. Smalley, E.B. , Meyers,C.J., Johnson,R.N.,Fluke, B.C. and Vieau,R.(1973). Benomyl for practical control of dutch elm disease. Phytopathology, vol.63,no. 10,1239-1252, ISSN 0031-949X.
29. Hwang B.K., Ahn S.J., Moon S.S.,(1994). Production, purification, and antifungal activity of the antibiotic nucleoside, tubercidin, produced by Streptomyces violaceoniger. Eur j. plant pathol.,72:480-485.
30. Mazzola M., Cook R.J., Thomashow L.S., Weller D.M., Pierson L.S.,(1992). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonas in soil habitats. Appl. Environ. Microbiol, 58: 2616-2624.
31. Rinu K., Sati P., Pandey A.,(2013). Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol,1-10.
32. Shahriari D., Barari H., 2008a. Effect of subtilin (Bacillus subtils) against tomato wilt disease. Sonboleh.,175:64-65.
33. Shahriari D., Barari H., 2008b. Effect of subtilin (Bacillus subtilis) against tomato wilt disease. Sonboleh.,176:64-65.
34. Garbeva P., J.A van veen and J.D. van Elsas,(2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of phytopathology 42,243-270.
35. Harman G.E., C.R. Howell, A. Viterbo, I. Chet and M. Lorito,(2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2, 43-56.
36. Suarez-Estrella F., C. Vargas-garcia, M.J. Lopez, C. Capel and J. Moreno,(2007). Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f.sp. melonis. Crop protection 26,46-53.
37. Akrami, M., (2015). Effects of Trichoderma spp. in Bio-controlling Fusarium solani and F. oxysporum of cucumber (Cucumis sativus). J. Appl. Environ. Biol. Sci. 4(3) 241-245.
38. Sharma P.,(2011). Complexity of Trichoderma- Fusarium interaction and manifestation of biological control. AJCS 5(8): 1027-1038.
39. HammerschmidtR.1999a. Induced disease resistance: how do induced plants stop pathogens? Physiological and Molecular Plant Pathology, 55:77–84.
40. Martínez, J. L., & Baquero, F. (2002). Interactions among Strategies Associated with Bacterial Infection: Pathogenicity, Epidemicity, and Antibiotic Resistance . Clinical Microbiology Reviews, 15(4), 647–679. http://doi.org/10.1128/CMR.15.4.647-679.2002
41. García-Mier, L., Guevara-González, R. G., Mondragón-Olguín, V. M., Verduzco-Cuellar, B. del R., & Torres-Pacheco, I. (2013). Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals. International Journal of Molecular Sciences, 14(2), 4203–4222. http://doi.org/10.3390/ijms14024203.
42. Rahman, M.A.,Begum M.F.,Alam M.F. (2009). Screening of Trichoderma Isolates as a Biological Control Agent against Ceratocytis Paradox Causing Pineapple Disease of Sugarcane. Mycobiology 37(4):277-285.
43. Choi,y.w., Hyde, K.D. and Ho, W.H.(1999). Single spore isolation of fungi. Fungal Diversity 3:29-38.
44. AZAZ, Dilek Ayse(2003). Isolation and Identification of soilborne Fungi in fields Irregated by GAP in Harran plain using two isolation methods. Turk j Bot (27):83-92.
45. Waksman, S.A., (1922).J.BACT,7:339-341.
46. Warcup,H.J.,(1950) The soil-plate method for isolation of fungi from soil. Nature 166,117-118.
47. Acharya Tankeshwar(2016). Pour plate method: Principal, Procedure, Uses, and (Dis) Advantagees . Microbe online 4.65/5(36).
48. Hernández-Suárez, M., Hernández-Castillo, F. D., Gallegos-Morales, G., Hugo Lira-Saldivar, R., Rodríguez-Herrera, R., & Aguilar, C. N. (2011). Biocontrol of soil fungi in tomato with microencapsulates containing Bacillus subtilis. American Journal of Agricultural and Biological Science, 6(2), 189–195. https://doi.org/10.3844/ajabssp.2011.189.195
49. Dennis, B., & Webstert, J. (1971). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Trans. Br. Mycol. Soc, 57, 41–48. https://doi.org/10.1016/S0007-1536(71)80078-5.
50. Jackson, A. M., Whipps, J. M., & Lynch, J. M. (1991). In vitro screening for the identification of potential biocontrol agents of Allium white rot. Mycological Research, 95(4), 430–434. https://doi.org/10.1016/S0953-7562(09)80842-3.
51. CHET, I. (1987). Trichoderrna - application, mode of action, and potential as a biocontrol agent of soilborne plant pathogens. In Innoruri~~ Approaches to Plant Disease Control, pp. 137-1 60. Edited by I. Chet. New York: John Wiley.
52. Hammerschmidt R (1999a) Induced disease resistance: how do induced plants stop pathogens? Phys Mol Plant Path 55: 77-84.
53. Moradi, M., Salehi, M., & Abdlollahian, J. (2012). A study of the audit information technology usage and perceived importance by auditors in Iran. Pacific Business Review International, 5(4),1-14.
54. Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 52(1), 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340.
55. Zeilinger, S., Gruber, S., Bansal, R. & Mukherjee, P. K. Secondary metabolism in Trichoderma - Chemistry meets genomics. Fungal Biology Reviews 30, 74–90 (2016).
56. Van Der Does, H. C. et al. The presence of a virulence locus discriminates Fusarium oxysporum isolates causing tomato wilt from other isolates. Environ. Microbiol. 10, 1475–1485 (2008).
57. Singh, P.K. and Kumar V. (2011) Biological control of Fusarium wilt of chrysanthemum with Trichoderma and Botanicals. Journal of Agricultural technology 7(6):1603-1613.
58. Li E, Wang G, Xiao J, Ling J, Yang Y, et al. (2016) A SIX1 Homolog in Fusarium oxysporum f. sp. conglutinans Is Required for Full Virulence on Cabbage. PLOS ONE 11(3): e0152273. https://doi.org/10.1371/journal.pone.0152273
59. Bart Lievens, Petra M. Houterman, Martijn Rep(2009); Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales, FEMS Microbiology Letters, Volume 300, Issue 2, 1 , Pages 201–215, https://doi.org/10.1111/j.1574-6968.2009.01783.x