An Overview of Geochemical Significance of Cretaceous Mafic Dykes in and around Nongchram Fault Zone of Shillong Plateau, NE India: Implications for Genetic Link to Kerguelen Plume

Main Article Content

Niva Rani Devi
Abstract viewed - 90 times.  PDF downloaded - 106 times.

Abstract

The present study highlights the geochemical and petrological signatures of a group of Early Cretaceous mafic dykes from Shillong plateau of NE India. These medium to fine grained, melanocratic dykes are emplaced in the Precambrian Gneissic Basement Complex in the western part of the Shillong plateau and are directionally parallel to the N-S trending deep-seated Nongchram fault. The whole rock geochemistry suggests that these dykes are genetically related to each other and probably derived from the same parental magma. The wide range of major and trace element composition represented by these mid to high Ti basalts suggest a number of differentiation process involving partial melting, fractional crystallization and crustal contamination probably by the lower continental crust. Thegeochemical scenario in terms of enrichment in LREE relative to HREE and high field strength element (HFSE), systematic Nb anomalies, moderate MREE to HREE fractionation suggests different depths of melting of slightly enriched mantle source that point to a mantle plume source showing EM1 signature. The very good correlation of REE behaviour and other trace element behaviour of the studied dykes with Kerguelen plume derived Rajmahal Group II basalt, Sylhet volcanics and some ODP (Ocean Drilling project) sites from Kerguelen basalts implicate a genetic link between the studied dykes and the Kerguelen mantle plume.

Downloads

Download data is not yet available.

Article Details

How to Cite
DEVI, Niva Rani. An Overview of Geochemical Significance of Cretaceous Mafic Dykes in and around Nongchram Fault Zone of Shillong Plateau, NE India: Implications for Genetic Link to Kerguelen Plume. International Journal of Current Trends in Science and Technology, [S.l.], v. 8, n. 03, p. 20587-20605, mar. 2018. ISSN 0976-9730. Available at: <http://currentsciences.info/index.php/ctst/article/view/370>. Date accessed: 25 sep. 2018. doi: https://doi.org/10.15520/ctst.v8i03.370.pdf.
Section
Geology

References

1. Allegre, C. J; Minster, J. F, 1978. Quantitative models of trace element behaviour in magmatic process. Earth and planetary science letters, 38, 1-25.
2. Baksi A K 1995. Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, Northeastern India; Chem. Geol. 121, 73–90.
3. Baksi A K 2000. Search for a deep-mantle component in mafic lavas using Nb-Y-Zr plot. Canadian J. Earth Sci.38, 813–824.
4. Bondre, N.R., Hart, W.K., Sheth, H.C., 2006. Geology and geochemistry of the Sangamner mafic dike swarm, Western Deccan Volcanic Province, India: implications
5. Buslov, M.M., Safonova, I.Yu, Fedoseev, G.S., Reichow, M., Davies, C., Babin, G.A. 2010. Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia: geology, geochronology and geochemistry. Russian Geology and Geophysics 51, 901-916.
6. Carlson, R. W.1991. Physical and chemical evidence o the cause ad source characteristics of flood basalt volcanism. Australian Journal of Earth Scinces, 38, 524- 544.
7. Chottopadhyay, N. and Hasimi, S. (1984). The Sung Valle y alkaline- ultramafi carbonatite complex, East Khasi Hills and Jaintia Hills district, Meghalaya. Rec. Geol. Surv. India, 113 (4), 24-23.
8. Coffin M F, Pringle M S, Duncan R A, Gladezenko T P, Storey M, M¨uller R D and Gahagan L A 2002. Kerguelen hotspot magma output since 130 Ma; J. Petrol. 43, 1121–1139
9. Condie, 1981. Archaean Greenstone belts, Elsevier, Amsterdam, 434p
10. Condie, C.K., Bobrow, D.J.& Card, K.D.,1987. Geochemistry of Precambrian Mafic Dykes from the Southern Superior Province of the Canadian Shield. In: H.C.Halls And W.F. Fahring (Editors), Mafic dyke swarms. Geol. Ass.Can. Spec.Paper 34, 95- 108
11. Condie, 2005 Condie, K, C 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79, 491-504, doi:10.1016/j.lithos.2004.09.014
12. Desikachar, 1974, O. S.VA review of tectonic and geological history of eastern India in terms of plate tectonics theory. Jour. geol. Soc. India. 33,137-149.
13. Devi, N. R and Sarma, K. P. 2006. Tectonostratigraphic study of conglomerates of Shillong basin of Meghalaya, I ndia. Jour. Geol. Soc. India.
14. Devi, N. R. and SarmaK. P. 2010. Strain analysis and stratigraphic status of Nongkhya, Sumer and Mawmaram conglomerates of Shillong basin, Meghalaya, India. Journal of Earth System Science. 119(2), 161-174.
15. Ermenco, N. A., Negi, B. S., Nasianov, M. V., Seregin, A. M., Despande, B. G., Sengupta, S. N, Talukdar, S. N, Sastri, V. V, Sokaluv, I. P. ,Pavbukov, A. T., Dutta, A. K and Raju, A. T. R 1969. Tectonic map of India-Principles of preparation. Bulletin ONGC, 6(1),1-111.
16. Fitton, J. G., James, D., Leeman, W.P. 1991. Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variations in space and time. Journal of Geophysical Research 96, 13693–13712.Fitton et al. (1997
17. Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., Taylor,R.N., 1997. Therma l and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 153, 197– 208.
18. Fodor, R.V;Vetter, S.K. 1984. Riftzone magmatism:petrology of basaltic rocks tran sitionalfrom CFB toORB. southeastern Brazil margin. Contrib. Mineral.Petrol. 88, 307-321
19. Frey, F. A., McNaughton, N. J., Nelson, D. R., deLaeter, J. R., Duncan, R. A., 1996. Petrogenesis of the Bunbury basalt, Western Australia: interaction between the Kerguelen plume and Gondwana lithosphere? Earth and Planetary Science Letters 144, 163–183.
20. Frey, F.A., Weis, D., Borisova, A.Y., Xu, G., 2002. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: new perspectives from ODP leg 120 sites. Journal of Petrology, 43, 1207–1239.
21. Ghatak A and Basu A R 2011. Vestiges of the Kerguelen plume in the Sylhet Traps, Northeastern India; Earth Planet Sci. Lett. 308, 52–64.
22. Golani P R 1991. Nongchram fault: A major dislocation zone from western Meghalaya;
J. Geol. Soc. India 12, 56–62.
23. Green, D. H. (1971) Composition of basaltic magmas as indicators of conditions of origin; application to oceanic volcanism, Phil. Trans. R. Soc., A268, 707-725.
24. Gupta R P and Sen A K 1988. Imprints of Ninety-East Ridge in the Shillong Plateau, Indian Shield. Tectonophysics 154, 335–341.
25. Hasse, K.M., and Devey, C.W., (1996): Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter Hotspot, South Pacific: implications for intrapalate magma genesis near a spreading axis. Earth Planet. Sci. Lett., 157, 1-4, 129-143.
26. Hergberg, C., 1995. Generation of plume magmas through time: an experimental approach. Chemical Geology 126, 1-16
27. Ingle, S., Weis, D., Frey, F.A., 2002. Indian continental crust recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137). Journal of Petrology 43, 1241– 1257.
28. Islam, M. S; Meshesha, D and Shinjo, R.2014. Mantle source characterization of Sylhet Traps, northeastern India: A petrological and geochemical study. J.earth syst. Sci.123, 8, 1839-1855
29. Jackson, M. G., Dasgupta, R. 2008, Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet.Sci.Lett., doi:10.1016/j.epsl.2008.09.023
30. Jourdan, F., Bertrand, H., Scha«rer, U., Blichert-Toft, J, Fe¤raud, G. & Kampunzu, A.B. 2007. Major and trace elements and Sr, Nd, Hf, and Pb isotope compositions of theKaroo Large Igneous Province, Botswana, Zimbabwe: lithosphere vs mantle plume contribution. Journal of Petrology 48, 1043-1077.
31. Kent R W, Pringle M. S, Muller R. D, Saunders A. W and Ghose N C 2002. 40Ar/39Ar geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau; J. Petrol. 43, 1141–1153
32. Khanna P. P., Saini N. K., Mukherjee P. K. and Purohit K. K. 2009. An appraisal of ICP-MS technique for determination of REEs: long term QC assessment of Silicate rock analysis. Himalayan Geol. 30(1), 95–99.
33. Lai, S., Qin, J., Li, Y., Li, S., Santosh, M., 2012. Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China: petrogenesis and tectonic implications. Journal of Asian Earth Sciences 47, 216-230.
34. Le Bas, M. J., Le Maitre, R.W., Streckeisen, A., Zanemn, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745-750.
35. Manson, V, 1967. Geochemistry of basaltic rocks in Poldervaart treatise on rocks of basaltic composition. Intersc. publ. John Wiley & Sons, New York, 215-269.
36. Murthy, N. G. K., 1987, Mafic dyke swarms of the Indian Shield, In: Mafic Dyke Swarms (eds)
37. Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 274, 321-355Myashiro (1974
38. Nambiar A R 2007. Petrology of lamprophyres from parts of East Garo Hills and West Khasi Hills districts, Meghalaya; J. Geol. Soc. India 32, 125–136
39. Nambiar A. R and Golani P. R 1985. A new find of carbonatite from Meghalaya; Curr. Sci. 54, 281–282.
40. Pearce, J. A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archaean oceanic crust. Lithos 100, 14-48.
41. Pearce, J. A., Norry, M. J., 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology. 69, 33- 47Pearce and Norry 1979
42. Polat, A., Kerrich, R., and Wyman, D. A., 1999. Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: traceelement and Nd isotope evidence for a heterogeneous mantle. Precambrian Research. 94, 139-173.
43. Rajamani,V., Shivkumar, K.,Hanson, G. N and Shirey, S.B.(1985). Geochemistry and petrogenesis of amphibolites, Kolar schist Belt, South India: Evidence for komatitic magma derived by low percentage of melting of the mantle, jour. Petrol., v.96. pp.92- 123.
44. Rao J., M 2002. Petrology and geochemistry of dolerite dykes, West Garo Hills, Meghalaya: A preliminary study; Gondwana Res. 5(4) 884–888.
45. Rao J M, Rao G. V. S. P and Sarma K. P 2009. Precambrian mafic magmatism of Shillong Plateau, Meghalaya and their evolutionary history; J. Geol. Soc. India 73, 143–152Pearce 2008;
46. Ray, J., Saha, A., Koeberl, C, Thoni, M., Ganguly, S & Hazara, S. 2013. Geochemistry and Petrogenesis of Proterozoic mafic rocks from East Khasi Hills, Shillong Plateau, Northeastern India. Precambrian Research, 230, 119-137
47. Robertson, E. A. M; Biggs J.; Cashman, K. V., Flyod, M. A. & Brown C. V.2016. Influence of regional tectonics and pre-existing structures on the formation of elliptical calderas in the Kenyan Rift, In Wright, T. J., Ayele, A., Ferguson, D. J., Kidane, T. & Vye-Brown, C. (eds). Magmatic Rifting and Active Volcanism. Geological Society, London, Special Publications, 420, 43– 67.
48. Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. John Wiley, Chichester, 352p
49. Sarkar, A., Datta, A. K., Poddar, B. C., Bhattacharyya, B. K., Kollapuri, V. K., Sanwal, R., 1996. Geochronological studies of Mesozoic igneous rocks from eastern India. Journal of Southeast Asian Earth Sciences 13, 77–81
50. Sarma, K. P.,Venkateshwaralu, M, Patil, S. K, Laskar, J. J., Devi, N. R., Mallikaharjuna R. J. 2014. Paleomagnetism of metadolerite dykes and sills from Proterozoic Shillong basin, NE India: Implications related to the age and magmatism, Journal of Geological Society of India. 83 (2), 147-155.
51. Sarma, K. P., Laskar, J. J., Devi, Niva Rani, Mazumdar, N., Mallikaharjuna Rao, J and Venkateshwaralu, M. 2015. Geochemistry of Mesoproterozoic metadolerite dykes and sills of Shillong basin, Meghalaya, NE India. Asian Journal of Multidisciplinary Studies, 3(2), 37-47.
52. Sato, H. 1977. Nickel content of basaltic magmas: identification of primary magmas an d a measure of the degree ofolivine fractionation. Lithos 10, 113-120.
53. Sheth H.C., Ray J.S., Bhutani R., Kumar, A. & Smitha R.S. 2009. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean. Bulletin of Volcanology.71, 9–28.
54. Simonov, V.A., Mikolaichuk, A.V., Safonova, I.Yu, Kotlyarov, A.V., Kovyazin, S.V., 2014. Late Paleozoic-Cenozoic intra-plate continental basaltic magmatism of the Tienshan-Junggar region in the SW Central Asian Orogenic Belt. Gondwana Research.
55. Song, X.-Y., Zhou, M.-F., Hou, Z.-Q., Cao, Z.-M., Wang, Y.-L., Li, Y., 2001.
Geochemical constraints on the mantle source of the Upper Permian Emeishan Continental Flood Basalts, Southwestern China. International Geology Review 43, 213-225.
56. Srivastava R. K and Sinha A. K 2004. The early Cretaceous Sung Valley ultramafic– alkaline–carbonatite complex, Shillong Plateau, northeastern India: Petrological and genetic significance. Mineral. Petrol. 80 241–263.
57. Sun S.S and McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42. 313–345.
58. Thompson, R. N., Morrison, M. A., Dickin, A. P., Hendry, G. L., 1983. Continental Flood basalts..arachnids rule OK? In: Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts and Mantle Xenoliths. Shiva Pub., Cambridge, MA, 158- 185.Thompson et al. 1983
59. Weaver, B.L., 1991. The origin of ocean island basalt end member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381-397.
60. Weis, D., Frey, F.A., 1991. Isotope geochemistry of the Ninety-east Ridge basalts: Sr, Nd, and Pb evidence for the involvement of the Kerguelen hotspot. In: Weissel, J.,Peirce, J., Taylor, E., Alt, J. (Eds.), Proceedings of the Ocean Drilling Program. : 121.College Station, TX, 591–610Weis and Frey 1991
61. Wilson, M.1993.Geochemical signatures of oceanic and continental basalts: a key to mantledynamics?. J.geol.Soc.London.,150, 977-990.
62. Winter, J. D., 2010. Principles of Igneous and Metamorphic petrology, PHI, 693p