MC

Current Trends in Science and Technology

an Open Access Publication ISSN: 0976-9730 | 0976-9498

Pharmaceutical Sciences

Nucleic Acid Based Therapeutic Delivery System

Sakshi Minocha
LLOYD School of Pharmacy Greater noida U.P.
Manoj Sharma
Associate Professor, School of Studies in Pharmaceutical Science, Jiwaji University, Gwalior, M.P., India
Ashish Agarwal
Associate Professor, Mandsaur University, Mandsaur, M.P., India
Anil Kumar Gupta
Associate Professor, Jaipur College of Pharmacy, Jaipur, Rajasthan, India.
Online First: March 01, 2018
| Google Scholar

Abstract

Nucleic acids have change biomedical research and become essential research tools. Nucleic acid molecules are useful in a variety of biochemical, diagnostic, and therapeutic applications. Gene therapy is a technique used to correct defective genes which are responsible for disease development. Gene therapy involves the transference of new genetic material to the cell for obtaining a therapeutic benefit, which offers new option for the treatment of various diseases. Nucleic acid-based molecules (deoxyribonucleic acid, complementary deoxyribonucleic acid, complete genes, ribonucleic acid, and oligonucleotides) are used as research tools within the gene therapy and in molecular medicine

  Submitted
Mar 1, 2018
Published
Mar 1, 2018
Abstract Views
1411
PDF Downloads
1056
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

References

1. R. Sharma and V. M. Katoch. Designing of oligonucleotides: probes and primers for diagnosis, epidemiology and research in medicine.J. Commun. Dis.38:305–316 (2006). 2. M. Jayapal and A. J. Melendez. DNA microarray technology for target identification and validation. Clin. Exp. Pharmacol. Physiol.33:496–503 (2006). 3. Haussecker D.Kay M.A. RNA interference. Drugging RNAi Science 2015 3471069 1070. 4. SuhrO.B.Coelho T.BuadesJ. Pouget J. ConceicaoI. BerkJ. SchmidtH. Waddington-CruzM. Campistol J. M.Betten court B.R.et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose studyOrphanet J. Rare Dis.201510109. 5. https://www.sciencedirect.com/topics/biochemistry-genetics-and molecular-biology/gene-therapy. 6. Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs. 2000; 60:249271. doi: 10.2165/00003495-200060020-00002. 7. Medina-Kauwe LK, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Ther. 2005; 12:1734–1751. doi: 10.1038/sj.gt.3302592. 8. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J. 1982;1:841–845. 9. Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta. 1991; 1088:131–134. 10. Mair L, Ford K, Alam MR, Kole R, Fisher M, Superfine R, et al. Size-Uniform 200 nm Particles: Fabrication and Application to Magnetofection. J Biomed Nanotechnol. 2009; 5:182–91. 11. Liu D, Ren T, Gao X. Cationic transfection lipids. Curr Med Chem. 2003;10:1735–7. 12. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45. 13. Yang J, Chen S, Huang L, Michalopoulos GK, Liu Y. Sustained expression of naked plasmid DNA encoding hepatocyte growth factor in mice promotes liver and overall body growth. Hepatology. 2001;33:848–59. 14. Kim HJ, Greeenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther. 1996;7:1339–46. 15. https://pubs.acs.org/doi/abs/10.1021/jm500330k 16. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vector occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4139-42 17. Gilboa E, Eglitis MA, Kantoff PW, et al. Transfer and expression of cloned genes using retroviral vectors. Biotechniques 1986; 4: 504-12 18. Guild BC, Finer MF, Housman DE, et al. Develoment of retroviral vectors useful for expressing genes in cultured embryonal cells and hematopoietic cells in vivo. J Virol 1988; 62: 3795-801 Guild BC, Finer MF, Housman DE, et al. Develoment of retroviral vectors useful for expressing genes in cultured embryonal cells and hematopoietic cells in vivo. J Virol 1988; 62:3795-801 19. J.D. Watson, F.H.C. Crick, The structure of DNA, Cold Spring Harb. Symp. Quant. Biol. 18 (1953) 123–131. 20. L.M. Smith, Nanostructures — the manifold faces of DNA, Nature 440 (2006) 283–284. 21. C. Zhang, M. Su, Y. He, X. Zhao, P.A. Fang, A.E. Ribbe, W. Jiang, C.D. Mao, Conformational flexibility facilitates self-assembly of complex DNA nanostructures, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 10665–10669. 22. D.E. Ingber, Tensegrity: the architectural basis of cellular mechanotransduction, Annu. Rev. Physiol. 59 (1997) 575–599. 23. Mathews QL, Curiel DT.Grne Therapy: Human Gemline Genetics Modifications-Assessing the Scientific, Socioethical, and Religious Issues. Southern Medical Journal 2007; 100:98-100 24. Bank A. Human Somatic Cell Gene Therapy 1996; 18:999-1007. 25. Wang C-Y, Li F, Yang Y, Guo H-Y, Wu C-X, Wang S (2006) Recombinant baculovirus containing the Diphtheria toxin A gene for malignant glioma therapy. Cancer Res 66:5798–5806 26. Gao WT, Soloff AC, Lu XH, Montecalvo A, Nguyen DC, Matsuoka Y et al (2006) Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 80: 1959–1964 27. Evans CH, Ghivizzani SC, Herndon JH, Wasko MC, Reinecke J, Wehling P et al (2000) Clinical trials in the gene therapy of arthritis. Clin Orthop 379:S300–S307 28. J.H. Chan, S. Lim , W.S. Wong. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol, 33[5-6], 2000, 533-40. 29. K.J.Scanlon, Y.Ohta, H. Ishida, H. Kijima , T.Ohkawa , A. Kaminski, et al. Oligonucleotide-mediated modulation of mammalian gene expression. FASEB J., 9[13], 1995, 1288-96. 30. P. Sazani, R. Kole. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J Clin Invest.,112[4], 2003, 481-6. 31. Dr.Bharti Bhandari, Dr.Deepti Chopra Department of Physiology, AIIMS, Jodhpur, Department of Pharmacology, HIMSR, Jamia Hamdard Antisense Oligonucleotide: Basic Concept and its Therapeutic ApplicationQuest JournalsJournal of Research in Pharmaceutical ScienceVolume 2 ~ Issue 3 (2014) pp: 01-13ISSN(Online) : 2347-2995 32. Engelhard, H.H., Antisense oligodeoxynucleotide technology: potential use for the treatment of malignant brain tumors. Cancer control. 1998, (5), 163–170. 33. Hammond, S.M., Bernstein, E., Beach, D., An RNA directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, (404), 293–296. 34. Erdal Cevher, Ali Demir Sezer and Emre Şefik ÇağlarGene Delivery Systems: Recent Progress in Viral and Non-Viral Therapy 35. Al-Dosari MS, Gao X. (2009). Nonviral Gene Delivery: Principles, Limitations, and Recent Progress. American Association of Pharmaceutical Scientist Journal; 11; 671-681. 36. Altaner C (2008). Prodrug cancer gene therapy. Cancer Letters; 270; 191–201. 37. Armendáriz-Borunda J, Bastidas-Ramírez BE, Sandoval-Rodríguez A, González-Cuevas J, Gómez-Meda B, García-Bañuelos J. (2011). 38. Production of first generation adenoviral vectors for preclinical protocols: Amplification, purification and functional titration. Journal of Bioscience and Bioengineering; 112415–421.
Downloads

Downloads

Download data is not yet available.

References

1. R. Sharma and V. M. Katoch. Designing of oligonucleotides: probes and primers for diagnosis, epidemiology and research in medicine.J. Commun. Dis.38:305–316 (2006).
2. M. Jayapal and A. J. Melendez. DNA microarray technology for target identification and validation. Clin. Exp. Pharmacol. Physiol.33:496–503 (2006).
3. Haussecker D.Kay M.A. RNA interference. Drugging RNAi Science 2015 3471069 1070.
4. SuhrO.B.Coelho T.BuadesJ. Pouget J. ConceicaoI. BerkJ. SchmidtH. Waddington-CruzM. Campistol J. M.Betten court B.R.et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose studyOrphanet J. Rare Dis.201510109.
5. https://www.sciencedirect.com/topics/biochemistry-genetics-and molecular-biology/gene-therapy.
6. Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs. 2000; 60:249271. doi: 10.2165/00003495-200060020-00002.
7. Medina-Kauwe LK, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Ther. 2005; 12:1734–1751. doi: 10.1038/sj.gt.3302592.
8. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J. 1982;1:841–845.
9. Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta. 1991; 1088:131–134.
10. Mair L, Ford K, Alam MR, Kole R, Fisher M, Superfine R, et al. Size-Uniform 200 nm Particles: Fabrication and Application to Magnetofection. J Biomed Nanotechnol. 2009; 5:182–91.
11. Liu D, Ren T, Gao X. Cationic transfection lipids. Curr Med Chem. 2003;10:1735–7.
12. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45.
13. Yang J, Chen S, Huang L, Michalopoulos GK, Liu Y. Sustained expression of naked plasmid DNA encoding hepatocyte growth factor in mice promotes liver and overall body growth. Hepatology. 2001;33:848–59.
14. Kim HJ, Greeenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther. 1996;7:1339–46.
15. https://pubs.acs.org/doi/abs/10.1021/jm500330k
16. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vector occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4139-42
17. Gilboa E, Eglitis MA, Kantoff PW, et al. Transfer and expression of cloned genes using retroviral vectors. Biotechniques 1986; 4: 504-12
18. Guild BC, Finer MF, Housman DE, et al. Develoment of retroviral vectors useful for expressing genes in cultured embryonal cells and hematopoietic cells in vivo. J Virol 1988; 62: 3795-801 Guild BC, Finer MF, Housman DE, et al. Develoment of retroviral vectors useful for expressing genes in cultured embryonal cells and hematopoietic cells in vivo. J Virol 1988; 62:3795-801
19. J.D. Watson, F.H.C. Crick, The structure of DNA, Cold Spring Harb. Symp. Quant. Biol. 18 (1953) 123–131.
20. L.M. Smith, Nanostructures — the manifold faces of DNA, Nature 440 (2006) 283–284.
21. C. Zhang, M. Su, Y. He, X. Zhao, P.A. Fang, A.E. Ribbe, W. Jiang, C.D. Mao, Conformational flexibility facilitates self-assembly of complex DNA nanostructures, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 10665–10669.
22. D.E. Ingber, Tensegrity: the architectural basis of cellular mechanotransduction, Annu. Rev. Physiol. 59 (1997) 575–599.
23. Mathews QL, Curiel DT.Grne Therapy: Human Gemline Genetics Modifications-Assessing the Scientific, Socioethical, and Religious Issues. Southern Medical Journal 2007; 100:98-100
24. Bank A. Human Somatic Cell Gene Therapy 1996; 18:999-1007.
25. Wang C-Y, Li F, Yang Y, Guo H-Y, Wu C-X, Wang S (2006) Recombinant baculovirus containing the Diphtheria toxin A gene for malignant glioma therapy. Cancer Res 66:5798–5806
26. Gao WT, Soloff AC, Lu XH, Montecalvo A, Nguyen DC, Matsuoka Y et al (2006) Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 80: 1959–1964
27. Evans CH, Ghivizzani SC, Herndon JH, Wasko MC, Reinecke J, Wehling P et al (2000) Clinical trials in the gene therapy of arthritis. Clin Orthop 379:S300–S307
28. J.H. Chan, S. Lim , W.S. Wong. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol, 33[5-6], 2000, 533-40.
29. K.J.Scanlon, Y.Ohta, H. Ishida, H. Kijima , T.Ohkawa , A. Kaminski, et al. Oligonucleotide-mediated modulation of mammalian gene expression. FASEB J., 9[13], 1995, 1288-96.
30. P. Sazani, R. Kole. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J Clin Invest.,112[4], 2003, 481-6.
31. Dr.Bharti Bhandari, Dr.Deepti Chopra Department of Physiology, AIIMS, Jodhpur, Department of Pharmacology, HIMSR, Jamia Hamdard Antisense Oligonucleotide: Basic Concept and its Therapeutic ApplicationQuest JournalsJournal of Research in Pharmaceutical ScienceVolume 2 ~ Issue 3 (2014) pp: 01-13ISSN(Online) : 2347-2995
32. Engelhard, H.H., Antisense oligodeoxynucleotide technology: potential use for the treatment of malignant brain tumors. Cancer control. 1998, (5), 163–170.
33. Hammond, S.M., Bernstein, E., Beach, D., An RNA directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, (404), 293–296.
34. Erdal Cevher, Ali Demir Sezer and Emre Şefik ÇağlarGene Delivery Systems: Recent Progress in Viral and Non-Viral Therapy
35. Al-Dosari MS, Gao X. (2009). Nonviral Gene Delivery: Principles, Limitations, and Recent Progress. American Association of Pharmaceutical Scientist Journal; 11; 671-681.
36. Altaner C (2008). Prodrug cancer gene therapy. Cancer Letters; 270; 191–201.
37. Armendáriz-Borunda J, Bastidas-Ramírez BE, Sandoval-Rodríguez A, González-Cuevas J, Gómez-Meda B, García-Bañuelos J. (2011).
38. Production of first generation adenoviral vectors for preclinical protocols: Amplification, purification and functional titration. Journal of Bioscience and Bioengineering; 112415–421.
No Supplimentary Material available for this article.

Statistics from Altmetric.com

Statistics from Dimensions.ai

Statistics from PlumX


Related Articles

Related Authors

 



In Google Scholar

In International Journal of Current Trends in Science and Technology

In Google Scholar

 
  • Sakshi Minocha
  • Manoj Sharma
  • Ashish Agarwal
  • Anil Kumar Gupta

  • INDEXING AND ABSTRACTING